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THIN OBLIQUE AIRFOILS AT SUPERSONIC SPEED

By RoserT T. JonEs

SUMMARY

The well-known methods of thin-airfoil theory have been
extended to obligue or sweptback airfoils of finite aspect ratio
moving at supersonic speeds. The cases considered thus far are
symmetrical airfoils at zero lift haring plan forms bounded by
straight lines. Because of the conical form of the elementary
flow fields, the resulis are comparable in simplicity to the
results of the two-dimensional thin-airfoil theory for subsonic
speeds.

In the case of untapered airfoils swept back behind the
Alachk cone the pressure distribution at the cenfer section 18
similar to that given by the Ackeret theory for a straight airfoil.
With ancreasing distance from the center section the distribution
approaches the form given by the subsonic-flow theory. The
pressure drag s concentrated chiefly at the center section and
for long wings a slight negative drag may aeppear on cutboard

sections.
INTRODUCTION

In reference 1 it was pointed out that the wave drag of
an infinite cylindrical airfoil disappears when the airfoil is
yawed to an angle greater than the Mach angle. This
observation led to the conclusion that the drag of a finite
airfoil could be greatly reduced by the use of sufficient
sweepback. With such a sweptback wing the wave drag
would be associated with departures from the ideal two-
dimensional flow at the root or tip sections and would thus
be a function of the aspect ratio. The present report extends
the theory of reference 1 to take account of these effects.

The treatment is based on the theory of small disturbances
in & frictionless compressible fluid. The idealized fluid and
its equations of motion are identical with those employed in
acoustics in the theory of sound waves of small amplitude.
The application of the theory is thus limited to bodies having
thin cross sections so that the velocity of motion imparted
to the fluid is small relative to the velocity of sound and so
that the pressure disturbances produced are small relative
to the ambient pressure.

The adaptation of the sound-wave theory to the eero-
dynamics of moving bodies was suggested many years ago
by Prandtl. The theory was applied by Ackeret (reference 2)
to thin airfoils moving at supersonic speed. Ackeret’s
treatment is limited, however, to infinitely long cylindrical
airfoils moving transversely. The present theory may be
considered an extension of Ackeret’s theory to take into
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account wings of finite span and wings having tapered or
sweptback plan forms. In the case of sweptback plan forms
the results are markedly different from those obtained by
the Ackeret theory and approach the values indicated in
references 1 and 3.

In reference 4 Busemann describes a method for cal-

culating the supersonic flow over bodies which produce a

conical pressure field. Busemann shows that the flow
around cones of circular cross sections as well as the flow
around the tip of a rectangular lifting surface satisfies
this condition. The fact that a great variety of three-
dimensional flows can be constructed by the superposition of
conical and cylindrical flow fields leads to an essential sim-
plification of the airfoil theory at supersonic speeds.

The present treatment differs from Busemann’s in that it is
further limited to flat bodies, that is, bodies which are thin
in both longitudinal and transverse sections. This addi-
tional restriction leads to a much simpler mathematical
treatment and one which is applicable to a wide variety of
airfoil shapes. Symmetrical nonlifting bodies are also
treated in reference 5 where use is made of integral expres-
sions corresponding to the velocity potential of plane-source
distribution.

SYMBOLS
|4 flight velocity
M Mach number
z,Y,2 coordinates
4 point on X-axis
2y limit of integration
) disturbance-velocity potential
u,v,w disturbance-velocity components
Uy value of u at z;

value of u for conjugate arrangement
local pressure

dynamic pressure (% pV’)
density of air
Legendre functions

source-strength factor
differential operator

O Qo oel
n
O
a

thickness of wing
slope of line source (absolute value)
chord of wing
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drag coefficient R
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THE OBLIQUE LINE SOURCE

The assumptions of small disturbances and a constant
velocity of sound throughout the fluid lead to the well-
known linearized equation for the velocity potential ¢ (see
reference 6)

(I—=M%zet dyytbee=0 (1)
The analysis is simplified by introducing the coordinates
=2
h=+M>—1y @)
= M"—12

Dropping the subscripts from the transformed coordinates
gives
bre— byy— Per= 0 (3)

According to the thin-airfoil theory the pressures an the
transformed airfoil are given by

Ap_, %
¢ 2V

2 0¢

=Tz (2—0) 4)

and the slope of the airfoil surface g—:—: is equal to the slope
of the streamlines near the chord plane; that is,

dz_w
dz Vv
s (2->0) (6)

The use of the coordinate transformation, equation (2), will
be understood in the following development. 'The results
are therefore applicable directly to a Mach number of +/2.
For an equivalent airfoil at another Mach number the y-
and z-coordinates of the surface will be multiplied by
vM?—1 while the pressure coefficients at corresponding
points will be divided by the quantity 342—1.

The elementary solution of equation (3) for a point source
is

1

D= VE—p—2
This solution is directly related to the subsonic potential

1
=TT

In the subsonic case the equipotential surfaces are, however,
ellipsoids, whereas in the supersonic case the equipotential
surfaces are hyperboloids limited by the Mach cone. (See
reference 6 for the derivation of these elementary solutions.)

Because of the linearity of equation (1) @ solution may be
used to denote one of the velocity components rather than
the velocity potential. The specification of one component
in this manner actually describes the whole flow field since
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the other components may be obtained by integrating the
given componentto obtain the velocity potential and then
differentiating the results along the desired directions to ob-
tain the.desired components. This procedure is especially
useful in the thin-airfoil theory, where the complete velocity
field may not be required.

Adopting the foregoing procedure, one may write

_ 1
Ug== T—f— 23

Since % is proportional to the pressure, such a solution cor-
responds to a point source in the pressure field. The
solution for an oblique line source may be obtained by
integrating for the effect of a row of point sources along the
line y=mz. It will be shown that such a line source satisfies
the boundary condition for a thin wedge-shape body. This
solution, as well as other expressions relating to oblique air-
foils, can be most conveniently expressed by referring to the
oblique coordinates

&' =x—my
¥ =y—mzx
2 =q+1—m? 2

(See fig. 1.) It may be shown that if any function f(x, y, 2

is a solution of
fu_fw‘_fu':O

then f(z’, ¥, 2’) is also a solution. In particular, the point-
source solution becomes

1 1
V1—m? Jd—y—2*

1
Ny t—2"

FiaurEe 1,—O0blique coordinates.
r'my—my
yhmg—mz
2= y1-mtz
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Hence the integration for the effect of an inclined line of
sources may be performed directly along the oblique ’-axis;
thus, for m<1.0

s dg )
w1, e

a:I
=L

where £’; is the position of the last source whose Mach cone
includes the point (27, ¥/, 2’) and is given by

=TI cosh™'—— (6)

¢i=o/— Y2

When m approaches 1.0 the source line approaches coin-
cidence with the Aach cone, corresponding to a transverse
velocity component equal to the velocity of sound.

For values of m greater than 1.0 the integration yields

r
u=—1% cos™! z . (D

It will be seen that in this case I is imaginary.

The vertical velocity near 2=0, which determines the
shape of the boundary, may be determined by integrating «
with respect to z and then differentiating the resulting
velocity potential with respect to z; thus (see appendix),

_% -
T Oz

=g—zfudz

—:l-_-ﬂ'£ V1—m? (8)

if 2—0 and y’<0. If ¥’>0, w=0. There is thus a discon-
tinuity in the vertical velocity of the streamlines when they
cross the line source at ¥'=0. "For small values of I/m this
discontinuity in vertical velocity agrees with the boundary
condition for a simple wedge shape having a small wedge
angle. (See fig. 2.)

If the source strength I is held constant and m is allowed
to approach zero, the wedge.angle ultimately becomes large.
At m=0 the line source actually satisfies the boundary con-
dition for the circular cone (reference 7), but it is found that
the slope of the conical boundary does not agree with the
slope of the streamlines near z=0 and hence the theory no

longer holds. The condition?—ao thus represents the transi-

tion from an oblique airfoil to & body of revolution and will
be avoided in the present analysis by restricting the formulas
to flat bodies, that is, airfoils that are thin in both longitudinal
and transverse section.

AIRFOIL OF WEDGE SECTION

Over the wedge section near the plane 2=0, the formula (8)
becomes simply

u=1 cosh™ Wz’—[ (9)
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FIGURE 2.~Pressure fleld for oblique wedge where 7<2.0. =

#t=cosh-1 I—Z:IL[

z+my
“=cosh-1 ToFmaz|

/fm

where [y’ | denotes the absolute magnitude of y'=y—max
The pressure is thus constant along the radial lines

’

m —— 1]
7 Constant (10)

and is conveniently represented by the variation along a line
parallel to the X-axis. Figure 2 shows the oblique wedge-
shape figure corresponding to a line source with m<1.0. In
this case the pressure field is confined to the intervior of the
Mach cone 2?—y?—2P=a't*—y'?—2'*=0 and the theory,
unlike the Ackeret theory, indicates a stegnation point along
the leading edge. (Actually, of course, the thin-airfoil
theory shows an infinite velocity at such points, but this is
to be interpreted as a velocity of the order of magnitude of
the flight velocity V. The pressure to be expected along the
leading edge is the stagnation pressure corresponding to the
transverse velocity component.) -

Givengg=%,, the wedge angle measured in downstream

sections, the source strength must vary with m according to

V m dz

I~ = ' (11)
(from equation (7)). Then
Ap 24 /
—&2—; Eg Vlin*—mi cosh™! ]i,l (12)

If m exceeds 1.0, theleading edge of the airfoil will lie out-
side the Mach cone. In this case

é£_2 dzg m z

BT R s ki o 8
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In the region between the leading edge and the Mach cone
4

cos™! ]%l is constant and equal to =; hence the pressure in

this region is constant, that is,

Ap__dz m
T & i (14)

Figure 3 illustrates this result.

z{y

FiGURE 3.—Pressure fleld for oblique wedge where m>1.9. éf-%-

If m— « a semi-infinite airfoil with its leading edge at
right angles to the direction of flight is obtained; here

g—my __ =Y
Vy—mz) L (1—m)2 P2

as)

and A—gp =2 %Z wherever y>+/2*—2*. This value agrees with
the Ackeret theory.
AIRFOILS BOUNDED BY PLANE SURFACES

The distribution of pressure over symmetrical airfoils
bounded by plane surfaces can be obtained by superimposing
the pressure fields for several line sources and sinks. This
superposition is greatly simplified by the conical form of the
pressure field for each single line source. Because of this
form, the whole distribution in the plane 2=0 is, in effect,
represented by a single curve. If the velocity field for a line
source beginning at the origin (equation (6)) is denoted by %
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and that beginning at x=—1 is denoted by u_,, and so forth,
the sum

U —Up

represents the velocity over a plate of uniform thickness
having a beveled leading edge of constant width. (See fig. 4.}
Similarly

U —2UF Uy

represents the pressure field for an airfoil having diamond-
shape cross sections.

The superposition required for several sources or sinks
can be accomplished by manipulation of a single curve if it
is remembered that « is a function of the ratio zfy. TFigure4
illustrates this process for a source and a sink. In terms of
the ratio zfy the separation of source and sink and hence
the scale of the chord length continually diminishes with
increasing distance from the root section,

At large distances from the vertex (z’— ) the expression

{for m<1.0)

_ o AL 2L
Uy Uy cosh ] cosh T (16)
is found to approach the value
_ , I
log [H=I2Q° (gni) an

where @, is the Legendre function. (See reference 7.)

Y

F16URE 4.—SBuperposition of sonrce and sink te obtain plate with beveled edge.
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In the thin-airfoil theory for subsonic speeds it
can be shown that if

wocP,(x)
<V % 18
then
U< Qx(2) (19)

since Neumenn'’s formula (reference 8, p. flﬁ)

f 1 (Zi(%

may be interpreted as the integration for the velocity distri-
bution due to an array of sources of strength

(20)

w d£=Pn(E) dE

along the chord of the airfoil. The expression €, %L of equa-

tion (17) thus represents the subsonic pressure distribution
over the beveled edge.!

At the root section (y=0) only the forward source need
- be considered since-the airfoil surface is ahédad of the Mach
cone originating at the rear source. Here

z+1—my
ly—m(z+1)|

1
-1 -
eccosh po (21)

%_y— Uy occosh™

and the pressure over the root section is thus constant, as
given by the Ackeret theory, but is altered in magnitude
by the obliquity.

The oblique wing lying behind the Mach lines thus shows
the Ackeret type of pressure distribution over the foremost
section and a progressive change along the span from this
distribution to the subsonic type of distribution. Since the
subsonic type of distribution shows no pressure drag, there
is a continuous falling off of the pressure drag with increesing
distance from the root section. The pressure drag of the
oblique wing thus arises chiefly on the foremost section, and
it follows that the drag coefficient of the wing as a whole
diminishes with increasing aspect ratio. It will be shown
subsequently that the effect of cutting the wing off along a
line y=Constant to produce a downstream tip causes a
reduction of the pressure drag on the adjacent sections; and
if the aspect ratio is sufficiently high, the pressure drag in
the region of the downstream tip may actually be negative.

If the wing lies ahead of the Mach lines (m>>1.0) the
Ackeret type of pressure distribution occurs and a pressure
drag arises over the whole length. In this case both z and w
are constant over the beveled part at a distance from the origin.

1 8imilarly §f Pa(t) d is taken as the chordwise distribution of vorticity,

4 « Py (7)
e Qu (2)

« dz
i
The first of this series of airfolls is the camber shape curved to support & unlform load.

F1aTRE 5.—Variation of pressure distrfbution along span of sweptback wing. mwtan 30°

Slope, dzfdx
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pStraight wing (Ackeref theory)
2 {

~Swepiback wing (609

i

o 7 I 5 & 7

Distance from root section in lf2 chord lengths
FravrE 8.—Varlation of drag coeflicient with distance from root section for sweptback wing.
‘Wedge sectlon; Mm=].4

The treatment thus far applies to semi-infinite cylindrical
wings having root sections near the origin. A complete
sweptback wing may be obtained by the addition of a sym-
metrical or conjugate arrangement of source lines below the
X-axis. Values of « for this conjugate arrangement may be
denoted by Z. Figures 2 and 3 show % for a single inclined
source and figure 5 shows calculated pressure distributions
at several sections along the span for a complete sweptback
airfoil having beveled sections. The addition of the con-
jugate source lines doubles the pressure at the root section,
but this interference effect falls off rapidly along the span.
It is noted that, as in figure 4, the most significant change
in pressure distribution occurs along the expansion wave
originating at the trailing edge of the root section. Figure 6
shows the variation in pressure drag along the span for this
airfoil obtained by integrating the chordwise components of
pressure at the different sections.

The addition of a reversed source-sink distribution havmg
its origin displaced to a point 0. (see fig. 7) will show the
effect of cutting the wing off in a direction parallel to the
direction of flight. It will be evident that the effect of such
& tip is characterized by the subtraction of the curves @ and
is limited to the area lying within the Mach cone which
originates at the tip. It is interesting to note that pressure
distributions of the Ackeret type, except reversed in sign,
are added near the tip; hence, cutting the tip off in this man-
ner reduces the drag of adjacent sections.
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FigurEe 7.—Addition of reversed source-sink distribution to produce tip.

Figure 8 shows the pressure distributions over a rectangu-
lar airfoil having & leading edge at right angles to the flow.
In the triangular area ahead of the Mach cones originating

at the tips the pressure is constant, as given by the Ackeret -

theory, whereas behind these Mach cones the pressure drops
sharply.
AIRFOIL OF BICONVEX SECTIONS

Curved surfaces require a continuous distribution of sources
and sinks alined with the generators of the surface. Each
elementary source line causes an infinitesimal change in
direction of the surface and hence the slope at any point may
be obtained by adding up the effects of all sources ahead of

that point. Thus
=4 o
Gy Ao 22)
or
&z__ 7 1—m? m? dI
& V. m dz

For airfoils of constant chord, m will be a constant and the
integrationscanbe performed without difficulty. Thesimplest
case is that of comstant curvature, which leads to profiles
formed from circular arcs.

In order to obtain a biconvex profile, it is necessary to
introduce finite sources of strength sufficient to form the
desired angle of intersection of the ares at the leading and
trailing edges, together with & uniform distribution of sinks
along the chord line between the two sources. These pro-
files thus require & uniform distribution of sources or sinks,
which may be obtained by integrating the elementary solu-
tion for the line source (equation (6)). Theresulting solution

may be denoted by% % and is, for m<1,
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b X

Mo

FIGURE 8.—Pressure distribution over airfoll of rectangular plan form.

Aq"-sm-l a3,
Lou= If cosh—
D ya—

=I< v ;m 9 cosh™! ]%—% y’ cosh™* ]%:;I) (23)

Inasmuch as the elementary solution % is of the form

f (5), the integrated solution appears in the form

L. (2)
D Ya ”

and will be conveniently represented by a curve typical of
all spanwise stations, namely,

we=s(5)

For a closed profile intersecting the X-axis at the points 1
there is obtained

p) =U_ + Uy —Y (iy—lﬁ Ug— y]b u.H) (24)
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FIGURE 9.—Pressure distribution over wing of biconvex section. A—:’-%‘ .

This superposition may be accomplished conveniently by

transposing and adding the typical curves » and ;‘b %, (See

fig. 9.)

It will be found that if m is less than 1.0 the velocity
distribution approaches, with increasing distance from the
root section, the form given by the subsonic-flow theory for
an airfoil of biconvex section, that is,

wec Py (%)
14
U@, %)

At the root section, however, the form is simply that given by
the Ackeret theory for a straight airfoil although the values

(25)

. . ' a1
arereduced in magnitude by the factor ﬁ cosh™! s

The pressure distribution and the variation of drag along
the span for the bilaterally symmetrical wing are shown in
figures 10 and 11.

CONICAL SURFACES

For tapered airfoils both m and I will be functions of £.
It is easily seen that closed surfaces can be obtained only if
the relation between m and £ is such that the line sources
have a common point of intersection, as in figure 7. If this
point is denoted by x, ¥
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FiGTRE 10.—Pressure distributfon at different points slong span. Blconvex wing.
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FratrE 11.—Veariation of drag coefcfent with distance from root section for wings of biconvex
. section. M=1.4; g-lo pereent,

The surface obteined is one generated by a line passing
through the fixed point z, ¥, and hence is a conical surface.

The pressure over the tapered airfoil requires the integra-
tion of

z—E—my “|dl

-y
v Lo gt

-y dI
=J: ’Uftd—EdE

where £; is the location of the vertex of the airfoil and

g=z m dz
& T yI—m g
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In conclusion it should be noted that the pressures have
been derived for an airfoil transformed according to equa-
tions (2). The pressures at corresponding points of the
original airfoil are to be obtained by dividing by A*—1.

Laxerey MEMORIAL AERONAUTICAL LABORATORY,
NaTioNAL ADvisorRy COMMITTEE FOR AERONAUTICS,
LaneLEY Figwp, Va., May 28, 1946.

APPENDIX
EVALUATION OF INTEGRAL OF EQUATION (8)

For m< 1.0 the disturbance is zero outside the Mach cone
and the range of integration should be extended only from

z,=+12+ 2 to 2, that is,

fj ude= f COSh e m dx (Al)
(for unit source strength). Furthermore,
o}
5 ) jorm +z"uda: \r—z:a o gy (A2)
since the integrand is zero at the lower limit. Now
0 o x —'2 J1—m? A3
o N T A
and hence the integral
z —2'2' 1 —m? )
= f o ey e 49

must be evaluated.

First it is noted that the integral venishes with z except

in the neighborhood of the Mach cone (4/z2—y?—27%=0)

and in the neighborhood of the line source (y’'=0). Near
the Mach cone y’2-+2'"—2"% so that
—z' 2 dx f —z dz
(ylg_'_zfz)‘x/z_y — 2" xl‘/xz_yz_zz (As)

Since the latter integral approaches zero with z, there is no
contribution to equation (A4) in the region of the Mach
cone. On the other hand, near the line source ¥'—0 and

Va''—y't— 22—’ hence, as 2/—0,

f T

1. ¥
= tan z,+Constant

—z'z'd2

f(y”-{— zfx) ‘/xls_yrz_ z'—i

(A6)
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The value of the integral changes from 0 to = in crossing
over the line source at ¥’=0 and is positive or negative de-
pending on whether 2’ approaches zero from the positive or
pegative side of the zy-plane. Hence

w=:l:;;- Ni=m

If m is greater than 1.0,

xl
U=C08 " —=———x
vy 2

and the flow disturbance extends outside the Mach cone to
a region bounded by plane waves extending from the line
source gnd tangent to the Mach cone. (See fig. 12.) The
equation of these planes can be easily shown to be y’*+2"*=0;
hence for m>1.0 the lower limit of integration is given by

~ @

y'i422=0

\\\

FigURE 12,—Information pertinent to evaluation of equation (8) for m>1.0. (See appendix.}
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or
— Jmi—T
:,,‘:?/_W:%_lz (AS8)
Then
d (= o (. T
Ezﬁ‘u d:v—a—zﬁlcos ‘———‘,?7,,_*_—2—,2 dz (A9)

In this case % does not go to zero at the lower limit buf is
equal to x. In all other regions, however, the integral
approaches zero uniformly with 2 as in the preceding case;
hence

9

w=35-] U dx

Z
_ bx;
a7

=i% NmE—1 (A10)

as before.
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